Thursday, 14 May 2009

Chemist Shows How RNA Can Be the starting Point For Life

An English chemist has found the hidden gateway to the RNA world, the chemical milieu from which the first forms of life are thought to have emerged on earth some 3.8 billion years ago. He has solved a problem that for 20 years has thwarted researchers trying to understand the origin of life — how the building blocks of RNA, called nucleotides, could have spontaneously assembled themselves in the conditions of the primitive earth. The discovery, if correct, should set researchers on the right track to solving many other mysteries about the origin of life. It will also mean that for the first time a plausible explanation exists for how an information-carrying biological molecule could have emerged through natural processes from chemicals on the primitive earth. The author, John D. Sutherland, a chemist at the University of Manchester, likened his work to a crossword puzzle in which doing the first clues makes the others easier. “Whether we’ve done one across is an open question,” he said. “Our worry is that it may not be right.” Other researchers say they believe he has made a major advance in prebiotic chemistry, the study of the natural chemical reactions that preceded the first living cells. “It is precisely because this work opens up so many new directions for research that it will stand for years as one of the great advances in prebiotic chemistry,” Jack Szostak of the Massachusetts General Hospital wrote in a commentary in Nature, where the work is being published on Thursday. Scientists have long suspected that the first forms of life carried their biological information not in DNA but in RNA, its close chemical cousin. Though DNA is better known because of its storage of genetic information, RNA performs many of the trickiest operations in living cells. RNA seems to have delegated the chore of data storage to the chemically more stable DNA eons ago. If the first forms of life were based on RNA, then the issue is to explain how the first RNA molecules were formed.For more than 20 years researchers have been working on this problem. The building blocks of RNA, known as nucleotides, each consist of a chemical base, a sugar molecule called ribose and a phosphate group. Chemists quickly found plausible natural ways for each of these constituents to form from natural chemicals. But there was no natural way for them all to join together. The spontaneous appearance of such nucleotides on the primitive earth “would have been a near miracle,” two leading researchers, Gerald Joyce and Leslie Orgel, wrote in 1999. Others were so despairing that they believed some other molecule must have preceded RNA and started looking for a pre-RNA world.The miracle seems now to have been explained. In the article in Nature, Dr. Sutherland and his colleagues Matthew W. Powner and Béatrice Gerland report that they have taken the same starting chemicals used by others but have caused them to react in a different order and in different combinations than in previous experiments. they discovered their recipe, which is far from intuitive, after 10 years of working through every possible combination of starting chemicals. Instead of making the starting chemicals form a sugar and a base, they mixed them in a different order, in which the chemicals naturally formed a compound that is half-sugar and half-base. When another half-sugar and half-base are added, the RNA nucleotide called ribocytidine phosphate emerges. A second nucleotide is created if ultraviolet light is shined on the mixture. Dr. Sutherland said he had not yet found natural ways to generate the other two types of nucleotides found in RNA molecules, but synthesis of the first two was thought to be harder to achieve. If all four nucleotides formed naturally, they would zip together easily to form an RNA molecule with a backbone of alternating sugar and phosphate groups. The bases attached to the sugar constitute a four-letter alphabet in which biological information can be represented.“My assumption is that we are here on this planet as a fundamental consequence of organic chemistry,” Dr. Sutherland said. “So it must be chemistry that wants to work.”The reactions he has described look convincing to most other chemists. “The chemistry is very robust — all the yields are good and the chemistry is simple,” said Dr. Joyce, an expert on the chemical origin of life at the Scripps Research Institute in La Jolla, Calif.

No comments:

Post a Comment